HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB.

نویسندگان

  • Kasuen Wong
  • Anima Sharma
  • Soumya Awasthi
  • Elizabeth F Matlock
  • Lowery Rogers
  • Carine Van Lint
  • Daniel J Skiest
  • Dennis K Burns
  • Robert Harrod
چکیده

The human immunodeficiency virus type-1 (HIV-1) infects microglia, macrophages, and astrocytes in the central nervous system (CNS) and may cause severe neurological diseases, such as AIDS-related dementias or progressive encephalopathies, as a result of CNS inflammation and neurotrophin signaling defects associated with expression of viral antigens and HIV-1 replication in the brain. The HIV Tat protein can be endocytosed by surrounding uninfected cells; interacts with transcriptional coactivators/acetyltransferases, p300/CREB-binding protein, and p300/CREB-binding protein-associated factor (PCAF); and induces neuronal apoptosis. Since nerve growth factor (NGF) receptor and brain-derived neurotrophic factor receptor signaling through CREB requires p300 and PCAF histone acetyltransferases, we sought to determine whether HIV-1 Tat coactivator interactions interfere with neurotrophin receptor signaling in neuronal cells. Here, we demonstrate that Tat-coactivator interactions inhibit NGF- and brain-derived neurotrophic factor-responsive CRE trans-activation and neurotrophin protection against apoptosis in PC12 and IMR-32 neuroblastoma cells. Purified recombinant Tat or Tat-derived synthetic peptides, spanning p300- and PCAF-binding sequences, inhibit histone H3/H4 acetylation in vitro. A Tat mutant, TatK28A/K50A, defective for binding p300 and PCAF, neither repressed NGF-responsive CRE transactivation nor inhibited histone acetylation. HIV-1 Tat interacts in PCAF complexes in post-mortem CNS tissues from donor neuro-AIDS patients, as determined by fluorescence resonance energy transfer immunoconfocal microscopy. Importantly, these findings suggest that HIV-1 Tat-coactivator interactions may contribute to neurotrophin signaling impairments and neuronal apoptosis associated with HIV-1 infections of the CNS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIV-1 tat transcriptional activity is regulated by acetylation.

The human immunodeficiency virus (HIV) trans- activator protein, Tat, stimulates transcription from the viral long-terminal repeats (LTR) through an RNA hairpin element, trans-activation responsive region (TAR). We and others have shown that trans-activator protein (Tat)-associated histone acetyltransferases (TAHs), p300 and p300/CBP-associating factor (PCAF), assist functionally in the activat...

متن کامل

HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods

The binding between the HIV-1 trans-activator of transcription (Tat) and p300/(CREB-binding protein)-associated factor (PCAF) bromodomain is a crucial step in the HIV-1 life cycle. However, the structure of the full length acetylated Tat bound to PCAF has not been yet determined experimentally. Acetylation of Tat residues can play a critical role in enhancing HIV-1 transcriptional activation. H...

متن کامل

HIV-1 Tat Binding to PCAF Bromodomain:

The binding between the HIV-1 trans-activator of transcription (Tat) and p300/(CREB-binding protein)-associated factor (PCAF) bromodomain is a crucial step in the HIV-1 life cycle. However, the structure of the full length acetylated Tat bound to PCAF has not been yet determined experimentally. Acetylation of Tat residues can play a critical role in enhancing HIV-1 transcriptional activation. H...

متن کامل

Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain.

The human immunodeficiency virus type 1 (HIV-1) trans-activator protein Tat stimulates transcription of the integrated HIV-1 genome and promotes viral replication in infected cells. Tat transactivation activity is dependent on lysine acetylation and its association with nuclear histone acetyltransferases p300/CBP (CREB binding protein) and p300/CBP-associated factor (PCAF). Here, we show that t...

متن کامل

p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage.

The p53 tumor suppressor protein is a sequence-specific transcription factor that modulates the response of cells to DNA damage. Recent studies suggest that full transcriptional activity of p53 requires the coactivators CREB binding protein (CBP)/p300 and PCAF. These coactivators interact with each other, and both possess intrinsic histone acetyltransferase activity. Furthermore, p300 acetylate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 10  شماره 

صفحات  -

تاریخ انتشار 2005